对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是小编给大家整理的初一数学知识点,希望对大家有所帮助。
初一下册数学知识点复习提纲
一元一次方程
一、几个概念
1.一元一次方程:
2.方程的解:使方程 的未知数的值叫方程的解。
5.移项: 叫做移项。
(切记:移项必须 )。
二、解一元一次方程的一般步骤:
①去分母——方程两边同乘各分母的
( 注意:去分母不漏乘,对分子添括号 )
② ,③ ,④ ,⑤
三、列方程(组)解应用题的一般步骤
①.设 ,②.列 ,③.解 ,④.检 ,⑤.答
第七章 二元一次方程组
一、几个概念
1.二元一次方程:
2.二元一次方程组:
3.二元一次方程组的解:使二元一次方程组的
的两个未知数的值。
二、二元一次方程组的解法:
1.代入消元的条件:将一个方程化为 的形式。
(当一个方程中有一个未知数系数为±1时,最适合)。
2.加减消元的条件:两个方程中,某一未知数的系数 或 。
(当两个方程中,某一未知数系数成倍数关系时,最适合)。
三.、解三元一次方程组的一般步骤:
①.先用代入法或加减法消去系数较简单的一个未知数,转化为 ;
②.然后再解 ,得到两个未知数的值;
③.最后将上步所得两个未知数的值代回前边某一方程,求出另一未知数的值。
第八章 一元一次不等式
一、几个概念
1.不等式: 叫做不等式。
2.不等式的解: 叫做不等式的解。
3.不等式的解集:
5.一元一次不等式:
6.一元一次不等式组:
7.一元一次不等式组的解集:
二、一元一次不等式(组)的解法:
1.解一元一次不等式的一般步骤:
①. ,②. ,③. ,④. ,⑤.
2.怎样在数轴上表示不等式的解集:
①先定起点:有等号时用 点;无等号时用 点。
②再画范围:小于号向 画;大于号向 画。
3.一元一次不等式组的解法:
先分别求 ;再求
4.注意:
①.在不等式两边同时乘或除以负数时, 不等号必须
②.求公共部分时:一般将各不等式的解集在同一数轴上表示;还有如下规律:
同大取 ,同小取 ;“大小,小大”取 ,“大大,小小”
初一下册数学不等式与不等式组知识点
1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。
2.不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。
3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)< G(x)与不等式 G(x)>F(x)同解。
(2)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x)< G(x)与不等式H(x)+F(x)
(3)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)< G(x)与不等式H(x)F(x)0,那么不等式F(x)< G(x)与不等式H(x)F(x)>H(x)G(x)同解。
7.不等式的性质:
(1)如果x>y,那么yy;(对称性)
(2)如果x>y,y>z;那么x>z;(传递性)
(3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)
(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z
(6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)
(7)如果x>y>0,m>n>0,那么xm>yn
(8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)
8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的次数是1,像这样的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般顺序:
(1)去分母 (运用不等式性质2、3)
(2)去括号
(3)移项 (运用不等式性质1)
(4)合并同类项
(5)将未知数的系数化为1 (运用不等式性质2、3)
(6)有些时候需要在数轴上表示不等式的解集
初一年级下册数学复习资料
统计
科学记数法:一个大于10的数可以表示成A.10N的形式,其中1小于等于A小于10,N是正整数。
扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。
各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
近似数字和有效数字:①测量的结果都是近似的。②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X(上边一横)。
加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。②一组数据中出现次数的那个数据叫做这个组数据的众数。③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。
调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。
频数与频率:①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。②当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。
初一数学北师大版知识点梳理相关文章:
★ 北师大版初一下册数学知识点复习总结
★ 七年级数学上册知识点北师大版
★ 北师大版七年级数学上册知识点
★ 北师版初一数学上册知识点
★ 北师大版七年级下数学提纲
★ 七年级数学上册知识点总结北师大
★ 北师大初一数学知识点总结
★ 七年级数学下北师大版知识点
★ 北师大版初中数学知识点提纲
★ 北师大版初一数学下册知识点